Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Virol Sin ; 37(4): 581-590, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1867891

ABSTRACT

SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.


Subject(s)
COVID-19 , Viral Vaccines , Adenoviridae/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Mice , Mice, Inbred C57BL , Pan troglodytes , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic
2.
EBioMedicine ; 58: 102890, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-666030

ABSTRACT

BACKGROUND: The novel coronavirus (SARS-CoV-2) shares approximately 80% whole genome sequence identity and 66% spike (S) protein identity with that of SARS-CoV. The cross-neutralization between these viruses is currently not well-defined. METHODS: Here, by using the live SARS-CoV-2 virus infection assay as well as HIV-1 based pseudotyped-virus carrying the spike (S) gene of the SARS-CoV-2 (ppSARS-2) and SARS-CoV (ppSARS), we examined whether infections with SARS-CoV and SARS-CoV-2 can induce cross-neutralizing antibodies. FINDINGS: We confirmed that SARS-CoV-2 infects cells via angiotensin converting enzyme 2 (ACE2), the functional receptor for SARS-CoV, and we also found that the recombinant receptor binding domain (RBD) of the S protein of SARS-CoV effectively inhibits ppSARS-2 entry in Huh7.5 cells. However, convalescent sera from SARS-CoV and SARS-CoV-2 patients showed high neutralizing activity only against the homologous virus, with no or limited cross-neutralization activity against the other pseudotyped virus. Similar results were also observed in vaccination studies in mice. INTERPRETATION: Our study demonstrates that although both SARS-CoV and SARS-CoV-2 use ACE2 as a cellular receptor, the neutralization epitopes are not shared by these two closely-related viruses, highlighting challenges towards developing a universal vaccine against SARS-CoV related viruses. FUNDING: This work was supported by the National Key Research and Development Program of China, the National Major Project for Control and Prevention of Infectious Disease in China, and the One Belt and One Road Major Project for infectious diseases.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Cross Reactions , Severe acute respiratory syndrome-related coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody Specificity , Betacoronavirus/genetics , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Female , Humans , Mice , Mice, Inbred BALB C , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2 , Sequence Homology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Emerg Microbes Infect ; 9(1): 1096-1101, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-457096

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide since it was confirmed as the causative agent of COVID-19. Molecular diagnosis of the disease is typically performed via nucleic acid-based detection of the virus from swabs, sputum or bronchoalveolar lavage fluid (BALF). However, the positive rate from the commonly used specimens (swabs or sputum) was less than 75%. Immunological assays for SARS-CoV-2 are needed to accurately diagnose COVID-19. Sera were collected from patients or healthy people in a local hospital in Xiangyang, Hubei Province, China. The SARS-CoV-2 specific IgM antibodies were then detected using a SARS-CoV-2 IgM colloidal gold immunochromatographic assay (GICA). Results were analysed in combination with sera collection date and clinical information. The GICA was found to be positive with the detected 82.2% (37/45) of RT-qPCR confirmed COVID-19 cases, as well as 32.0% (8/25) of clinically confirmed, RT-qPCR negative patients (4-14 days after symptom onset). Investigation of IgM-negative, RT-qPCR-positive COVID-19 patients showed that half of them developed severe disease. The GICA was found to be a useful test to complement existing PCR-based assays for confirmation of COVID-19, and a delayed specific IgM antibody response was observed among COVID-19 patients with severe progression.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Immunoglobulin M/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Betacoronavirus , COVID-19 , COVID-19 Testing , Child , China , Clinical Laboratory Techniques , Disease Progression , Female , Humans , Immunoassay , Immunoglobulin M/immunology , Male , Middle Aged , Pandemics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL